
MSFC Research and Technology  1996

Analytical Model
Improvement Using
Singular Value
Decomposition With
a One-Dimensional Line
Searching Technique

Matthew F. Orr, Jr./ED23
205–544–1534
E-mail: matthew.orr@msfc.nasa.gov

The goal of analytical model improvement
is to systematically improve a finite element
model so that predicted responses such as
mode shapes and natural frequencies
closely match those measured by actual
experimental tests. The updated finite
element model can then be used to more
accurately predict transient response loads
and displacements. In general, both the
experimental data and the analytical model
may contain errors, and the improvement
process should detect and minimize these
differences.

The software code AMI (analytical model
improvement) used in this study, was
developed for both structural optimization
applications and for analytical model
improvement applications. AMI consists of
a UNIX script file which calls NASTRAN
to provide structural data and also calls
several FORTRAN codes that calculate
improved or optimized design parameters.

The methodology developed for AMI uses
several advanced mathematical techniques.
A search direction is first calculated with a
linear least-squares solution, using singular
value decomposition (SVD). Second order
information is then utilized, in a one-dimen-
sional line search, to determine a step size
which yields the optimal match between
experimental and analytical data. Two
approximation functions are considered for
use in the one-dimensional line search.

The analytical model improvement analysis,
in its simplest form, is essentially a linear

least-squares problem. That is because the
number of Eigenvector degrees-of-freedom
and Eigenvalues, measured during the
modal test, usually greatly exceed the
number of design variables that are to be
solved for. In matrix notation, this can be
expressed by a linear equation as,

∆ =J δ

where ∆ is a vector containing the differ-
ences between experimental measured and
analytical quantities such as eigenvalues
and eigenvectors. The vector δ  contains the
design parameter changes to be solved for
in order that the experimental and analytical
quantities are in agreement. The Jacobian
matrix J contains the sensitivities of the
analytical modal quantities with respect to
the design parameters.

Using SVD the Jacobian matrix J can be
written as the product of three matrices,

J=U W VT

And the above linear equation can be solved
as,

δ =V W–1 UT ∆

The solution that this SVD method yields,
is the so-called minimal p-2 norm residual
error solution. It basically represents the
best fit of the analytical model to the
experimental data possible. Any ill
conditioning present in the system of
equations becomes readily apparent when
examining the singular values or the
resulting condition number which is the
ratio of the largest singular value divided by
the smallest singular value. Singular values
less than a given tolerance level are
discarded, thus removing any ill condition-
ing, and insuring the accuracy of the
solution.

In practice, the relationship between
experimental and analytical eigenquantities
is often not well approximated by the above
linear equation. Significant nonlinearities
may exist. The problem then becomes one
of nonlinear data fitting which can generally
only be solved by iteration. For this reason,

the analytical model improvement problem
is best approximated as a series of sequen-
tial linear least-squares problems. With this
method, the FEM is updated during each
analytical model improvement cycle, and if
convergence is not achieved, the process of
calculating sensitivities and solving the
resulting linear least-squares equations is
repeated.

Sometimes the linear least-squares
incremental solution, δ  will produce a more
accurate parametric model than existed
originally. Often times, however it may be
wildly divergent. It can be shown that there
exists a step-size parameter α, such that α
times the vector δ  will yield an incremental
solution for the design variables,

δ incremental=α δ

with a residual error that is guaranteed to be
less than the previous residual. If the
residual error can be sequentially mini-
mized, the final resulting solution should be
the best solution possible.

In this mathematical scheme, the linear
solution δ  is used as the search direction
and the step size parameter α represents
what portion of the linear solution is to be
used. The trick then, is to determine what
value of the step-size parameter α to use.
With a constant search direction δ , the
estimated design variable values are solely a
function of the parameter α,

δ(α) estimated=α δ  + δ  initial

Approximations for Eigenvalues and
Eigenvector degrees-of-freedom, which are
a function of the estimated design variables,
δ(α)estimated are also required. Two methods
for the approximations were evaluated. The
first method uses a special version of the
method of moving asymptotes (MMA) to
approximate the eigenquantities. The
second method uses a generalized quadratic
equation (GQE) for the approximations.
The approximate eigenquantity functions
are such that they exactly match the
eigenquantities and their first and second
derivatives at the initial design parameters.
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Using the approximation functions (MMA
or GQE), the p-2 norm residual error
between the estimated and the test measured
eigenquantities is next determined. This
estimated p-2 norm residual error is now
only a function of the parameter α.

A one-dimensional line search optimization
routine in the International Math and
Statistics Library (IMSL) is next used to
find the value of α, which minimizes the
estimated residual error. This value of the
parameter, say α*, is then used to get an
improved estimate of the design variables.

Both approximation functions, MMA and
GQE, use second order eigenquantity
information, namely primary second

derivatives, determined through a forward
finite difference technique. Whenever a
second derivative term is zero or is negative,
a small positive number is substituted. This
provides for a so-called convex approxima-
tion which provides for a unique solution.

A fixed-base modal survey was conducted at
Marshall Space Flight Center on December
11, 1991, which experimentally determined
the lower-frequency dynamic characteristics
of the Small Expendable Deployer System
(SEDS). Figure 49 shows the finite element
model for the SEDS test article including
several of the major structural components.
This analytical finite element model contains
approximately 6,600 degrees-of-freedom.
The first two natural frequencies and mode

shapes were used for this correlation study;
the corresponding frequency range of
interest was 50 Hz and less. The first test
and analysis mode shape was a pitch mode
of the canister about the x-axis. The second
was a lateral canister translation in the
x direction.

Table 3 shows the design variables that were
chosen to be updated in this study. Design
variable number one is the canister delta
mass moment of inertia about the x- or
z-axis. This variable augments the finite
element model prediction of the mass
moment of inertia of the tether which is
inside of the canister. It tends to compensate
for modeling the tether with using only two
lumped masses connected by very stiff bar

Figure 49.—Small Expendable Deployer System (SEDS) finite element model
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Cannister Delta Moment of Inertia

Aft Test Fixture Rotational Stiffness Kθy

Brace to Torquebox to Cannister Stiffness K

Aft Test Fixture Rotational Stiffness Kθx

Longeron Stiffness E (modulus of elasticity)

Aft Test Fixture Rotational Stiffness Kθz

Brace Stiffness E (modulus of elasticity)

Cannister Support Stiffness E (modulus of elasticity) 
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5 Longeron Stiffness_E

6 Aft Test Fixture Stiffness
K_ theta_z

7 Brace Stiffness E

8 Cannister Support Stiffness_E

Table 3.—Design parameter definitions.

Figure 50.—Analytical model improvement analysis—design parameters versus iteration number for various methods of computing a.

elements; the mass moments of the tether’s
inertia had not been determined exactly. The
modulus of elasticity of the longeron, of the
canister support or torque tube, and of the
brace were also chosen as design variables.
Three rotational stiffnesses design variables,
at the aft ends of the longerons, represent test
fixture effects. Another design parameter is a
bearing stiffness between the brace and
canister support and canister.

With the eight design parameters chosen, the
unbounded linear solution was prone to fairly
large excursions. This is partly due to
combining mass or inertia design variables
with stiffness variables during the analysis.
Using physically realistic design parameters
is an important requirement for this type of
analysis, however, if the results produced are
to be meaningful. Figure 50 shows several
analyses using four different options for
selecting the step-length parameter α. A
constant move-limit assumption indirectly
specifies the parameter α since the largest
design variable is limited to a given fraction
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Table 4.—SEDS simulated data test cases.

of its previous value and other design
parameters are ratioed accordingly. This
move limit option is often used in structural
optimization problems. The move-limit
options using move-limits of 0.5 and of 1.0,
however, did fail to converge even after
18 iterations.

The processes using the method of moving
asymptotes and generalized quadratic
equation converge in eight and nine
iterations respectively. These results show
the advantage of using approximation
functions with second order information.

The AMI software also includes a
FORTRAN code that monitors various test-
related parameters such as modal assurance
criteria numbers (MAC) and cross-
orthogonality numbers. The final MAC
numbers predicted were 0.994 and 0.993 for
the first two modes. The diagonal cross
orthogonality numbers between analysis
and test were 0.999 for both sets of modes;

the off-diagonal values were only 0.004 and
0.003. And frequency errors were mini-
mized to 0.05 percent for both modes.
Acceptable values for frequency errors are
usually three to five percent, and diagonal
cross-orthogonality numbers are usually
required to be 0.900 or greater; off
diagonals should be less than 0.1. The
above results predicted by AMI are
significantly better than these requirements.

The second order approximation functions
were very effective for reaching a converged
solution in a reasonable number of
iterations. The accuracy of the solution was
still somewhat in question, however. For
this reason, six simulated test cases were
designed where the target solution was
known before the AMI analysis was begun.
Table 4 gives results of this study. The
MMA determination of the step size α was
used for this study since it seemed to yield
somewhat better results than the GQE
method.

For test case number one, the first design
variable was increased by 100 percent from
its nominal value, i.e., increased from 268.7 to
537.4 lb/in2, as given in weight units. Modal
data were calculated for this configuration and
used as experimental test data. The analytical
model improvement analysis matched the
design parameters for this test case in four
iterations with negligible errors.

For every one of the six test cases in fact, each
of the design parameters was predicted to the
correct value with negligible errors. The most
difficult test case considered, number six,
took more iterations (seven) to converge—as
would be expected—since this configuration
had been substantially modified from the
nominal configuration.

The AMI software is a useful tool that can be
used by the analyst for the sometimes difficult
task of analytical model improvement. The
approximation functions, using second order
information, converge to an accurate solution
in a reasonable number of iterations.
Improved design variables calculated by AMI
are both physically realizable and also very
realisitic.
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